<u>Microcytic Hypochromic</u> <u>Anemia</u>

Microcytic Hypochromic Anemia

Causes:

Figure 3.1 The causes of a hypochromic microcytic anaemia. These include lack of iron (iron deficiency) or of iron release from macrophages to serum (anaemia of chronic inflammation or malignancy), failure of protopor-phyrin synthesis (sideroblastic anaemia) or of globin synthesis (α - or β -thalassaemia). Lead also inhibits haem and globin synthesis.

• Mechanism of microcytosis:

- Hb synthesis →↓ MCHC & ↓ MCH, division of erythroid series → till a certain level of MCHC, this repeated division ↓ MCV → Microcytosis.
- (1st hypochromia then microcytosis)

Iron Deficiency Anaemia

Iron Metabolism

• Fe intake:

1 mg /day (continuously reutilized)

Intake= loss (small)

Nutritional requirements:

• Diet: 15-20 mg/day : a- Haem : meat, fish, liver

b- ferritin : vegetables e.g Spanish

<u>5-10 % is absorbed</u> Abs. 1 mg/day

- Exceptions:
 - **Extra-needs:** abs. up to 3-4 mg/d (max)
 - Increased demands: preg, menses, growing 1 mg/d

Factors affecting requirements: Req.

- Menstruation: 0.7 mg Fe lost / d
- Growth: infancy > childhood > adolescence
- Pregnancy :
- Expansion of mother blood
- Formation of placenta & cord
- > Fetal requirements
- ➢ Loss during delivery

<u>N.B</u>: One pregnancy without Fe supplement leads to depletion of Fe stores.

Iron Absorption:

Sites:

duodenum & upper jejunum

Amount :

1 mg/ day

- **Forms:** animal diet (haem Fe), meat, fish, liver
 - vegetable diet (ferric complex), spanish

Mechanisms:

Non Haem Fe (veg.)	Haem Fe (animal)
Luminal stage	X luminal processes
Mucosal stage: Enters by : Receptor mediated, passive diffusion, + surface mucin	Mucosal stage: Enters + mucosal R Fe present in haem ring→ Porphyrin ring broke → Fe release
Blood	Blood

Factors affecting Fe absorption:

1-Amount of Fe in diet : absorption is α 1

amount

2-Forms of Fe in diet:

Haem is easier than non haem Fe

3-Other substance in diet: Ascorbic acid $\rightarrow \uparrow$ absorption

Phytates, phosphates, tea $\rightarrow \downarrow$ absorption

4-Pancreatic secretions:

 $\rightarrow \downarrow$ absorption

So in pancreatic diseases (e.g. pancearititis) \downarrow secretions $\rightarrow \uparrow$ absorption \rightarrow Haemochromatosis

5-Gastoferrin:

Present in gastric juice , bind to Fe (unavailable for abs.) $\rightarrow \downarrow$ absorption

• Gastroferrin $\downarrow \downarrow$:

-In Fe def an. 2ry to it (protective mechanism to prevent further \downarrow from abs.)

In hemochromatosis : as a cause of it

(\downarrow Gast. \uparrow abs. \rightarrow Haemochromatosis)

6- Hcl: ↑ abs.

Liberate Fe+++ from its complexes

Facilitates \uparrow abs. of Fe++

Imp. For chelation

Regulation of Fe absorption:

• Stage of Mucosal uptake:

no. of R.

• Transfer stage:

Controlled by state of stores

Transfer stage: (Controlled by state of stores)

• Tissues: gut , liver , MQ Fe to plasma transferrin

→ Erythropoiesis

- Amount abs. depends on that given by tissues
- ↓amount ↓ Fe,↓stores, ↑abs. e.g. Fe def. anamia
- Trythropoiesis T amount given by tissues stores (overloaded)
 absorption
- This is known as <u>Mucosal Block Theory</u>
- Except in :
- Haemochromatosis: stores absorption
- Ineffective Erythropoiesis : e.g. Thalasamia, sideroblastic an.

Iron Transport :

<u>Transferrin</u>

- β glycoprotein
- Synthesized in liver α 1

stores

- Half life 8 days
- MW 80,000
- Carry 4mg Fe (but > 30mg pass through it every day (absorption, RBCs destruction)
- Level 180-260 mg/dl
- 2 Fe+++ atoms binds to its N & c terminals & needs 2 HCO3 for their bindings (but 1 site is better than other).
- N Transferrin is 1 saturated with Fe (Saturated Capacity)

3

- TIBC = 300-400 ug/dl (amount of Fe that can bind to transferrin)
 Fe sat! TIBC
- Serum Fe = 100-150 ug/dl
- Transferrin Receptors:
- Protein coded by a gene on chromosome 3 & bind transferrin
- Specific R. on various tissues:

1- cells: erythroblast, reticulocyte, placenta & small % on non erythroid tiss. e.g liver, heart

- 2- plasma: (soluble form):
- Detected by CD 71/Abs

• Level in plasma α 1 \downarrow Fef R

Fe supply

- Can be used instead of ferrokinetices
- Once transferrin gives up Fe → apotransferrin
- \rightarrow circulation \rightarrow reutilized
- With normal life span (120 days) 1% of RBCs destroyed 20-25 mg Fe till taken by transferrin → reutilized RBCs

Lactoferrin:

- It's a glycoprotein that can bind to 2 atoms of Fe.
- But this Fe cannot be reutilized.
- MW 77,000.
- Found in milk, other secretions, 2ry granules of neutrophils.
- Has R. on MQ.
- It has bacteriostatic action by depriving microorganisms of Fe needed for growth.

During inflammation, lactoferrin is excreted from neutrophils \rightarrow plasma \rightarrow bind to R on MQ & compete with transferrin for Fe. (This is the pathogenesis of anaemia of chronic disease).

Table 1: Iron Absorption:

Factors favoring absorption	Factors reducing absorption
Haem iron	Inorganic iron
Ferrous form (Fe2+)	Ferric form (Fe3+)
Acids (HCl, vitamin C)	Alkalis – antacids, pancreatic secretions
Solubilizing agents (e.g. sugars, amino acids)	Precipitating agents phytates, phosphates, tea
iron deficiency	iron excess
Ineffective erythropoiesis Pregnancy Hereditary haemochromatosis	Decreased erythropoiesis Inflammation

Storage of Iron:

<u>Ferritin</u>	<u>Haemosiderin</u>		
 2 of storage Fe 3 H2o soluble. Protein Fe complex. Contains 20% of its wt. Fe. Small in size → x visible by light microscope. Considered as 1ry Fe stores. Gives Fe rapidly to tissues. Present in plasma. Present in tissues 	 1/3 H2o insoluble. Protein Fe complex. Contains 37% of its wt. Fe. Larger in size → visible by L.M. by Perl's stain. Considered as 2ry Fe stores. Gives Fe less easily to tissues. X present in plasma. Present in tissues (RBCs, BM, spleen, ms.). 		

• Plasma ferritin:

- F: 14-150 ug/L

- 24 subunits of 2 lg types:
- ➢ H subunit (heart, RBCs).
- L subunit (liver, spleen, placenta).

Both ferritin & haemosiderin act as stores for unneeded Fe & a source of Fe when required.

Functional Fe containing proteins:

<u>1- Hemoglobin :</u>

- MW 64,000.
- Contains 66% of the Fe.
- Formed of 4 haem & 4 globin.
- Can bind to 4 mol. Of o2.

2- Myoglobin:

- MW 17,000.
- Contains 4-5% of Fe.
- Has 1 haem gp.
- Has higher affinity for o2 (act as o2 reservoir in ms.).

3- Haem & non haem Fe proteins of mitochondria:

- Succinate dehydrogenase. Intra-cellular substrates
- Cytochrome oxidase.
- & ATP formation
- Catalase & lactoperoxidase.

4- Fe Sulphur protein:

• Xanthine oxidase, reduced NAD.

5- Ferritin & haemosidrin

6- Lactoferrin

Iron Deficiency Anaemia

• <u>Def.:</u>

It is the most advanced state of Fe deficiency ch. By:

- | or absent Fe stores.
- serum Fe conc.
- Transferrin sat.
- ↓ Hb conc., Hct level

<u>Aeitology:</u>

Causes of iron deficiency:

• Chronic blood loss: Bleeding: 10ss

Uterine

Gastrointestinal, e.g. peptic ulcer, oesophageal varices, piles, etc.

Rarely, **haematuria**, haemoglobinuria, pulmonary haemosiderosis, selfinflicted blood loss

Prematurity

Growth

Pregnancy

Erythropoietin therapy

• Malabsorption: \downarrow absorption:

Gastrectomy,

Autoimmune gastritis

• Decrease intake: Poor diet: intake:

A major factor in many developing countries but rarely the sole cause in developed countries.

Stages of Fe deficiency:

1- Iron depletion : (earliest stage)

- Only Fe stores \downarrow (N s. Fe, Hb, Hct).
- 2- Iron deficient erythropoiesis: (Fe def. e out anaemia)
- | stores
- serum Fe But N Hb, Hct
- \downarrow transferrin sat.

3- Iron deficiency anaemia:

- | stores
- serum Fe
- Transferrin sat.
- ↓ Hb, Hct
- If anaemia is present MHA

	Normal	Latent iron deficiency	lron deficiency anaemia
Red cell iron (peripheral film and indices)	Normal	Normal	Hypochromic, microcytic MCV↓ MCH↓
Iron stores (bone marrow macrophage iron)	++	0	0
From: Essential Haemato Published 2011 by Blacky	<i>logy</i> , 6th Edn. © A. V. H vell Publishing Ltd.	loffbrand & P. A. H. Mos	5.

Diagnosis:

- <u>Clinical picture:</u>
- 1- General symptoms:
- symptoms of the cause
- symptoms of anaemia
- Specific symptoms of Fe def. an. E.g. pica.
- 2- Epithelial changes: (2ry to↓ intracellular enzy. Fe ptn)
- > Angular stomatitis & glossitis (atrophic changes in epith. of tongue & mouth).
- ➢ Post cricoid oesophageal web: Atrophy & keritinization of oesophageal epith.→ dysphagia → Plummer-Vinson Syndrome (it may turn malignant esp. in males).
- Achlorhydria

- > 2ry to def.: Fe def \rightarrow atrophic gastritis
- > cause: mucosal atrophy $1^{st} \rightarrow \downarrow$ Fe absorption (HCL imp. in abs.)
- > Koilonychia: flatening of nail concavity (return to N after ttt).

Lab Findings:

1-CBC:

- RBCs
- \blacktriangleright \downarrow Hb , \downarrow MCHC \downarrow MCV \downarrow Hct
- Microcytic hypochromic anaemia
- Occasional target cells, pencil shaped cells.
- Poikilocytosis in severe cases.
- ➢ Retics are low or N.
- > It may show Dimorphic picture \rightarrow microcytes

 \rightarrow macrocytes

due to:

combined B12, folate def.

recent ttt.

recent transfusion.

- WBCs: N
- **Platelets:** may be $\uparrow\uparrow$ (\downarrow Fe $\rightarrow\uparrow$ megakaryopoiesis).

From: Essential Haematology, 6th Edn. © A. V. Hoffbrand & P. A. H. Moss. Published 2011 by Blackwell Publishing Ltd.

Figure 3.8 The peripheral blood film in severe iron deficiency anaemia. The cells are microcytic and hypochromic with occasional target cells.

2-B.M:

- Erythroid Hyperplasia with under haemoglobinisation (ragged normoblasts).
- By Iron stains:
 - absence of Fe stores in MQ.
 - absence of sideroblasts with small ragged cytoplasm.
- Occasionally megaloblastic changes (if combined def.)

3-Plasma studies:

- 🕹 serum Fe
- **↓** serum ferritin
- **↑** TIBC
- **↓**transferrin saturation

4-Flowcytometry:

↑ Transferrin Receptors (CD 71+ve)

5-个 protoporphyrin in erythrocyte

Differential Diagnosis :

All other causes of MHA (see table)

Figure 3.12 Investigation and management of iron deficiency anaemia. GI, gastrointestinal; TIBC, total iron-binding capacity.

<u>Treatment:</u> → underlying cause

► correction of Fe def.

Oral Iron	Parental Iron (in emergency only)		
Ferrous sulphate Ferrous gluconate	Fe dextran Fe sorbitol		
 100-200 mg/d 3 tabletes/d for 3-6 ms (to correct stores) Side effects: GIT disturbance, nausea, vomiting 	 x tolerate oral Fe Rapid correction of stores is needed Late pregnancy Before operations with severe Fe def. Side effects: headache, vomiting anaphylactic shock — death 		

Evaluation for ttt for Fe def. Anaemia:

- Within 3-4 days A Retics
- Within 3-7 days 🕇 serum Fe
- Every 3 weeks Hb 2 g/dl
- After 1 month [†] serum ferritin

Table 2: Failure of response to oral iron.

- Continuing haemorrhage
- Failure to take tablets
- Wrong diagnosis especially thalassaemia trait,
- sideroblastic anaemia
- Mixed deficiency associated folate or vitamin B12 deficiency
- Another cause for anaemia (e.g. malignancy, inflammation)
- Malabsorption coeliac disease, atrophic gastritis, *Helicobacter* infection.